
# Primary 4 Science





### An Overview: Big Ideas in the Primary Science Syllabus

| Big Ideas (Themes) | Key Inquiry Questions                                                                                                                                                                                    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diversity          | <ul> <li>What is the environment made up of?</li> <li>Why is it important to maintain diversity?</li> <li>How do we go about understanding the diverse range of living and non-living things?</li> </ul> |
| Systems            | <ul> <li>What are different parts of a system?</li> <li>How do parts of a system or different systems interact together to perform a function?</li> </ul>                                                |
| Interactions       | <ul><li>How does Man interact with the surroundings?</li><li>What are the consequences of Man's interactions with his surroundings?</li></ul>                                                            |
| Cycles             | <ul><li>What are the cycles in our everyday life?</li><li>How are cycles important to life?</li></ul>                                                                                                    |
| Energy             | <ul><li>How does energy affect Man and his surroundings?</li><li>Why is it important to conserve energy?</li></ul>                                                                                       |
|                    |                                                                                                                                                                                                          |





## Primary 4 Science Syllabus

| Themes       | Lower Block (P3 & P4)                                                                                            | Upper Block (P5 & P6)                                                                                                                      |
|--------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Diversity    | <ul><li>Diversity of living and non-living things</li><li>Diversity of materials</li></ul>                       |                                                                                                                                            |
| Cycles       | <ul> <li>Cycles of Plants and Animals (Life Cycles)</li> <li>Cycles in matter and water (Matter) (P4)</li> </ul> | <ul> <li>Cycles in plants and animals (Reproduction)</li> <li>Cycles in matter and water (Water)</li> </ul>                                |
| Systems      | <ul> <li>Plant system (Plant parts and functions) (P4)</li> <li>Human system (Digestive system) (P4)</li> </ul>  | <ul> <li>Plant /Human system (Respiratory and circulatory systems)</li> <li>Cell system</li> <li>Electrical system</li> </ul>              |
| Interactions | Interaction of forces (magnets)                                                                                  | <ul> <li>Interaction of forces (Frictional, gravitational forces, force in springs)</li> <li>Interaction within the environment</li> </ul> |
| Energy       | • Energy forms and uses (light and heat) (P4)                                                                    | <ul><li>Energy forms and uses (photosynthesis)</li><li>Energy conversion</li></ul>                                                         |



## Components of lessons

- Theory: Acquisition of basic scientific terms and concepts
- Practical: Carry out experiments in the science laboratory
- Science Workbooks required at P4 (Cycles/Systems/Energy)
- Supplementary / Process Skills Worksheets
- Practice Papers
- Experiential Learning @OLN (e.g. Ecogarden/Outdoor Learning Space)
- E-learning : SLS lesson packages

NOTE: Files will be returned for parents' checking and signature upon completion.



## Outdoor Experiential Learning @ OLN

- Lessons are designed by teachers
  - to stimulate students' curiosity about their environment
  - connect Scientific facts with the real world

E.g.

- Observe a plant and identify the different plant parts.
- Observe different types of stems/flowers/leaves.





## Science Programme

#### **Roles play by Science**

#### **Programme**

Science Fair/ Week (Term 3)

Science in Daily Life
Using scientific skills in
everyday life







<sup>\*</sup>fun and interesting activities to stimulate interest in science



## Science Programme

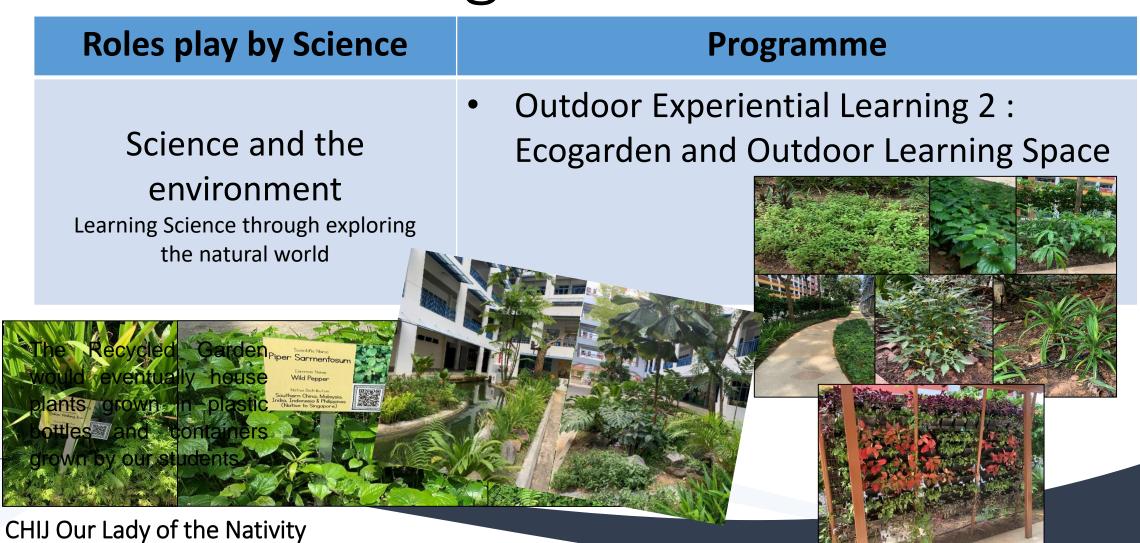
#### **Roles play by Science**

## Science and the environment

Learning Science through exploring the natural world

#### **Programme**

 Outdoor Experiential Learning 1 : Science Trail outside school (Pre-Covid)







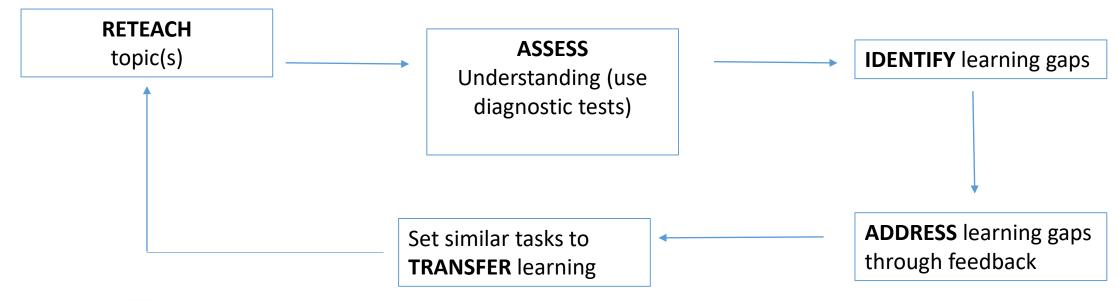

Simple in Virtue, Steadfast in Duty

## Science Programme





### Support Lesson


- Commence in Week 3 Term 1
- Identification of pupils for support lesson is based on P3 overall results (Science)

#### Focus:

- Reteach concepts taught in class.
- Use diagnostic approach to identify learning gaps.
- Practice papers focused on areas that pupils are weak at.



## Support Lesson Structure





## Assessment

| Term | Type of Assessment      |
|------|-------------------------|
| 1    | Process Skills Review 1 |
| 2    | Process Skills Review 2 |
| 3    | Performance Task        |
| 4    | End-of-Year Exam        |





#### Format:

- <u>2</u> questions
- 5 marks each

#### Process Skills required:

- **Observation** use senses to gather information about objects / events
- Inferring interpret or explain observations / data / information
- Comparing identify similarities and differences between objects/events
- Classifying group objects / events
- Analysing identify parts of objects/information/ patterns, and relationship between them
- Using apparatus and equipment

#### How does it work?

- Pupils carry out 2 experiments.
- Step by step instructions to guide pupils.
- Answer questions based on observations.
- Provide reason(s) for their observation.
- To be carried out during lab lessons.

#### How do we prepare the pupils?

One practice given to all classes before the performance task.





## How do we guide your child in constructing scientific explanations?





The Science department adopted the Claim-Evidence-Reasoning (CER) Framework (developed by McNeill and Krajick) to guide pupils when constructing science explanations.

## C.E.R stands for:







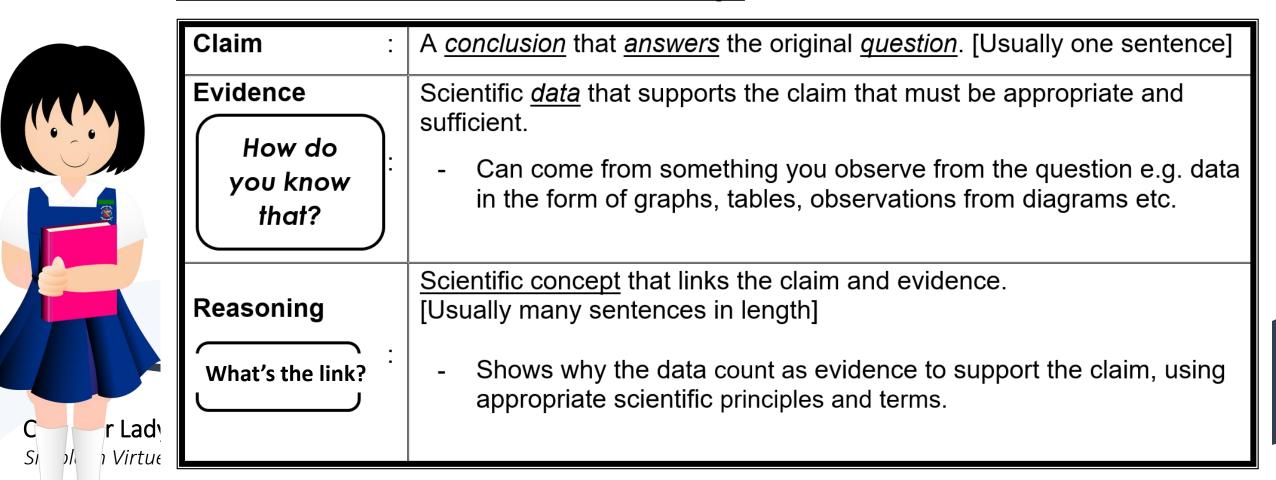


## Why use CER answering technique?

Three key areas during constructing science explanations:

Identify and use Evidence.

• Providing Reasoning for why their evidence supports their Claim.






#### **Components**

- Make a <u>Claim</u> about the problem.
- Provide <u>Evidence</u> for the claim.
- Provide scientific Reasoning that links the evidence to the claim.

#### What is Claims, Evidence and Reasoning?





## Q & A Session

