

Primary 5 Science

An Overview: Big Ideas in the Primary Science Syllabus

Big Ideas (Themes)	Key Inquiry Questions
Diversity	 What is the environment made up of? Why is it important to maintain diversity? How do we go about understanding the diverse range of living and non-living things?
Systems	 What are different parts of a system? How do parts of a system or different systems interact together to perform a function?
Interactions	How does Man interact with the surroundings?What are the consequences of Man's interactions with his surroundings?
Cycles	 What are the cycles in our everyday life? • How are cycles important to life?
Energy	 How does energy affect Man and his surroundings? Why is it important to conserve energy?

Primary 5 Science Syllabus

Themes	Lower Block (P3 & P4)	Upper Block (P5 & P6)
Diversity	Diversity of living and non-living thingsDiversity of materials	
Cycles	Cycles of Plants and Animals (Life Cycles)Cycles in matter and water (Matter)	Cycles in plants and animals (Reproduction)Cycles in matter and water (Water)
Systems	 Plant system (Plant parts and functions) Human system (Digestive system) 	 Plant /Human system (Respiratory and circulatory systems) Cell system Electrical system
Interactions	Interaction of forces (magnets)	 Interaction of forces (Frictional, gravitational forces, force in springs) Interaction within the environment
Energy	Energy forms and uses (light and heat)	Energy forms and uses (photosynthesis)Energy conversion

Components of lessons

- Theory: Acquisition of basic scientific terms and concepts
- Practical: Carry out experiments in the science laboratory
- Science Workbooks required at P5 (Cycles/Systems/Energy)
- Supplementary / Process Skills Worksheets
- Practice Papers
- Experiential Learning @OLN (e.g. Ecogarden/Outdoor Learning Space)
- E-learning : SLS lesson packages

NOTE: Files will be returned for parents' checking and signature upon completion.

Outdoor Experiential Learning @ OLN

- Lessons are designed by teachers
 - to stimulate students' curiosity about their environment
 - connect Scientific facts with the real world

E.g.

- Observe a plant and identify the different plant parts.
- Observe different types of stems/flowers/leaves.

Science Programme

Roles play by Science

Programme

Science Fair/ Week (Term 3)

Science in Daily Life
Using scientific skills in
everyday life

^{*}fun and interesting activities to stimulate interest in science

Science Programme

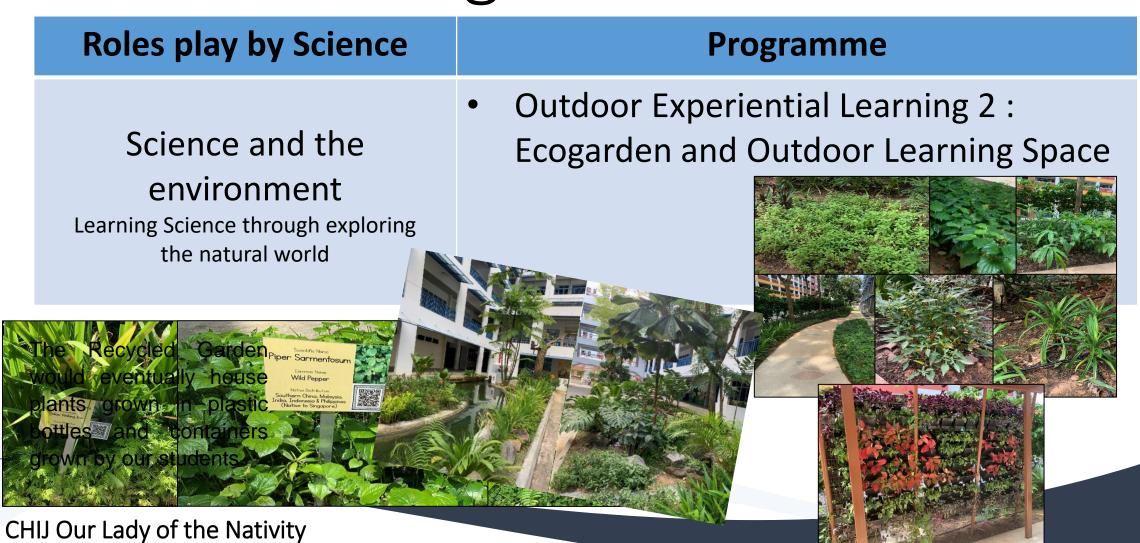
Roles play by Science

Science and the environment

Learning Science through exploring the natural world

Programme

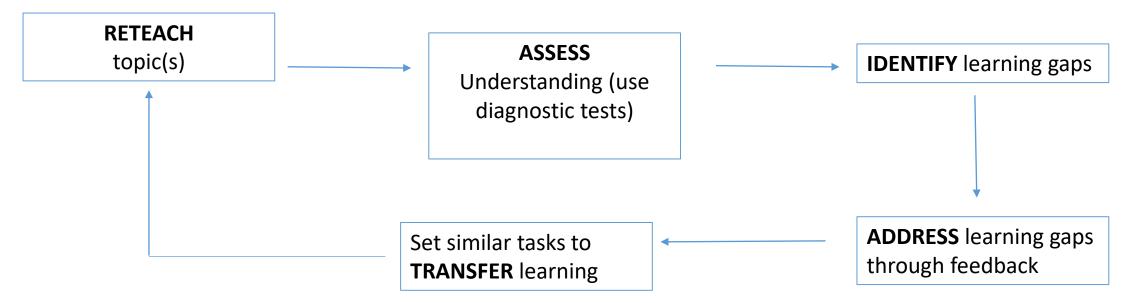
 Outdoor Experiential Learning 1 : Science Trail outside school (Pre-Covid)



Simple in Virtue, Steadfast in Duty

Science Programme

Support Lesson


- Commence in Week 3 Term 1
- Identification of pupils for support lesson is based on P4 overall results (Science)

Focus:

- Reteach concepts taught in class.
- Use diagnostic approach to identify learning gaps.
- Practice papers focused on areas that pupils are weak at.

Support Lesson Structure

Assessment

Term	Type of Assessment
1	Topical Review 1
2	Topical Review 2
3	Topical Review 3
4	End-of-Year Exam

Standard Science Format for End-of-Year Exam

Booklet A

- 28 Multiple Choice Questions (MCQ)
- 4 options given, choose the correct answer
- Total : 28 x 2marks = 56 marks

Standard Science Format for End-of-Year Exam

Booklet B

- 12 Open-Ended Questions (OE)
- May consist up to 4 parts e.g. (a), (b), (c), (d)
- Each part could be 1 mark or 2 marks
- Each question could be up to 5 marks
- Total: 44 marks

Foundation Science Format for End-of-Year Exam

Booklet A

- 18 Multiple Choice Questions (MCQ)
- 3 options given, choose the correct answer
- Total : 18 x 2marks = 36 marks

Foundation Science Format for End-of-Year Exam

Booklet B

- Structured and Open-ended questions
- May consist up to 4 parts e.g. (a), (b), (c), (d)
- Structured questions: 2 to 3 marks (14 marks)
- Open-ended questions: 2 to 4 marks (20 marks)
- Total: 34 marks

How do we guide your child in constructing scientific explanations?

The Science department adopted the Claim-Evidence-Reasoning (CER) Framework (developed by McNeill and Krajick) to guide pupils when constructing science explanations.

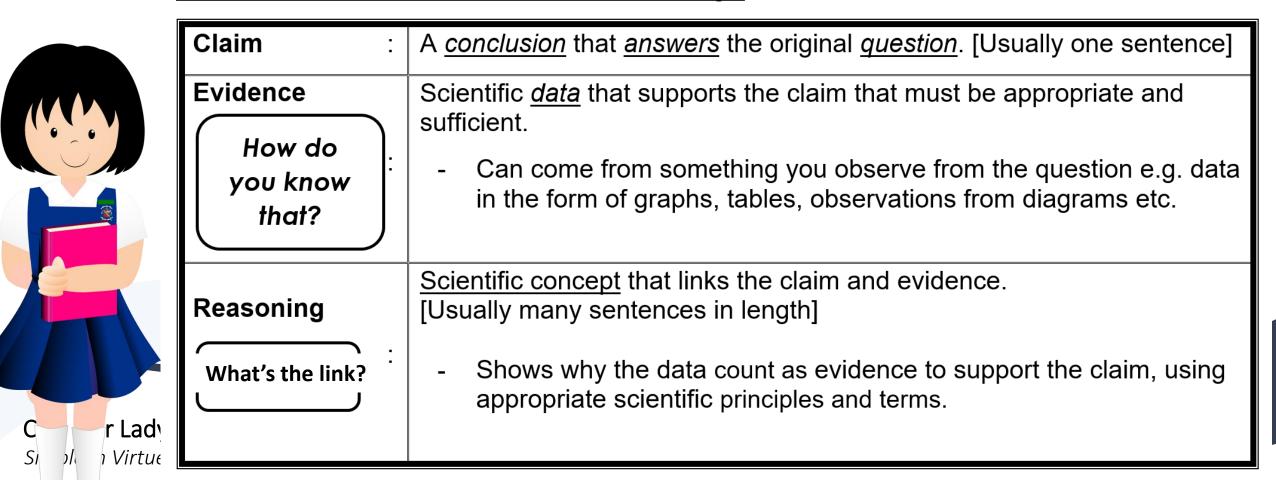
CER stands for:

Why use CER answering technique?

Three key areas during constructing science explanations:

Identify and use Evidence.

• Providing Reasoning for why their evidence supports their Claim.



Components

- Make a <u>Claim</u> about the problem.
- Provide <u>Evidence</u> for the claim.
- Provide scientific Reasoning that links the evidence to the claim.

What is Claims, Evidence and Reasoning?

Q & A Session

